Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
translated by 谷歌翻译
安全是每个机器人平台的关键特性:任何控制政策始终遵守执行器限制,并避免与环境和人类发生冲突。在加强学习中,安全对于探索环境而不会造成任何损害更为基础。尽管有许多针对安全勘探问题的建议解决方案,但只有少数可以处理现实世界的复杂性。本文介绍了一种安全探索的新公式,用于强化各种机器人任务。我们的方法适用于广泛的机器人平台,即使在通过探索约束歧管的切线空间从数据中学到的复杂碰撞约束下也可以执行安全。我们提出的方法在模拟的高维和动态任务中实现了最先进的表现,同时避免与环境发生冲突。我们在Tiago ++机器人上展示了安全的现实部署,在操纵和人类机器人交互任务中取得了显着的性能。
translated by 谷歌翻译
通过微调调整大型预训练模型(PTM)会施加过刺激的计算和存储负担。对参数有效调整(PET)的最新研究发现,与常规微调相比,仅优化以PTM为条件的一小部分参数才能产生PAR性能。通常,PET方法精确设计参数有效的模块(PET模块)可以应用于PTMS内部的任意细粒位置。但是,这些细粒度位置的有效性很大程度上依赖于复杂的手动指定,因此通常会产生次优的结果。与手动指定相反,我们以自动方式探索构建宠物模块。我们将自动\ textbf {s} earch \ textbf {s} parse \ textbf {s} \ textbf {p} arameter- \ textbf {e} fficbf {e} fficient \ textbf {t textbf {t} uning(s $^3 $ pet) 。基于各种PET方法的统一框架,S $^3 $ PET通过双层优化进行了可区分的PET结构搜索,并提出了移动的全局Sigmoid方法,以明确控制可训练的参数的数量。广泛的实验表明,S $^3 $ PET超过了具有较低训练参数的手册和随机结构。搜索结构可保留99 \%的微调性能,具有0.01 \%可训练的参数。此外,S $^3 $ PET的优势通过极低的训练参数预算(0.0009 \%$ \ sim $ 0.01 \%)进行扩增。搜索结构是可转移和解释的,为PET方法的未来设计提供了建议和指导。
translated by 谷歌翻译
近年来在开发更好的图像标题模型方面取得了巨大进展,但其中大多数依赖于单独的对象探测器来提取区域特征。最近的视觉语言研究通过利用网格表示来实现更灵活的模型训练和更快推理速度的速度来转向探测器趋势。但是,这种发展主要专注于图像理解任务,并且对标题生成任务的研究仍然较少。在本文中,我们涉及一种更好的无需探测器图像标题模型,并提出了一种基于纯视觉变压器的图像标题模型,称为VITCAP,其中使用了网格表示而不提取区域特征。为了提高性能,我们介绍了一种新颖的概念令牌网络(CTN)来预测语义概念,然后将它们纳入端到端的标题。特别地,CTN是基于视觉变换器构建的,并且旨在通过分类任务预测概念令牌,其中包含丰富的语义信息极大地利益标题任务。与以前的探测器的模型相比,Vitcap大大简化了架构,同时在各种具有挑战性的图像标题数据集上实现了竞争性能。特别是,Vitcap分别达到138.1苹果酒分数,即在Nocaps上的Coco-Caption Karpatal-Splity,93.8和108.6苹果酒分数和Google-CC标题数据集上分别达到138.1苹果酒分数。
translated by 谷歌翻译
快速学习已成为现代自然语言处理的新范式,它直接适应培训的语言模型(PLMS)到$ CLOZE $ -Style预测,自回归建模或序列到序列生成,从而导致各种任务的表现。但是,尚未提出及时学习的标准实施框架,以及大多数现有的及时学习码条,通常是不受管制的,仅为特定方案提供有限的实现。由于有许多细节,例如模板策略,初始化策略和语言化策略等,因此需要在快速学习中考虑,从业者面临障碍,以便快速调整所需的迅速学习方法到他们的应用程序。在本文中,我们展示了{OpenPrompt},一个统一的易于使用的工具包,可以通过PLMS快速学习。 OpenPrompt是一项研究型框架,配备了效率,模块化和可扩展性,其组合性允许自由地将不同的PLMS,任务格式和提示模块组合在统一的范例中。用户可以宽松地部署快速学习框架,并在没有约束的情况下在不同的NLP任务上评估它们的泛化。 OpenPrompt在{\ url {https://github.com/thunlp/openprompt}}上公开发布。
translated by 谷歌翻译
How well does a classic deep net architecture like AlexNet or VGG19 classify on a standard dataset such as CIFAR-10 when its "width"-namely, number of channels in convolutional layers, and number of nodes in fully-connected internal layers -is allowed to increase to infinity? Such questions have come to the forefront in the quest to theoretically understand deep learning and its mysteries about optimization and generalization. They also connect deep learning to notions such as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in the infinite width limit trained by gradient descent; this object was implicit in some other recent papers. An attraction of such ideas is that a pure kernel-based method is used to capture the power of a fully-trained deep net of infinite width. The current paper gives the first efficient exact algorithm for computing the extension of NTK to convolutional neural nets, which we call Convolutional NTK (CNTK), as well as an efficient GPU implementation of this algorithm. This results in a significant new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], and only 6% lower than the performance of the corresponding finite deep net architecture (once batch normalization etc. are turned off). Theoretically, we also give the first non-asymptotic proof showing that a fully-trained sufficiently wide net is indeed equivalent to the kernel regression predictor using NTK.
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Free-text rationales (FTRs) follow how humans communicate by explaining reasoning processes via natural language. A number of recent works have studied how to improve language model (LM) generalization by using FTRs to teach LMs the correct reasoning processes behind correct task outputs. These prior works aim to learn from FTRs by appending them to the LM input or target output, but this may introduce an input distribution shift or conflict with the task objective, respectively. We propose KNIFE, which distills FTR knowledge from an FTR-augmented teacher LM (takes both task input and FTR) to a student LM (takes only task input), which is used for inference. Crucially, the teacher LM's forward computation has a bottleneck stage in which all of its FTR states are masked out, which pushes knowledge from the FTR states into the task input/output states. Then, FTR knowledge is distilled to the student LM by training its task input/output states to align with the teacher LM's. On two question answering datasets, we show that KNIFE significantly outperforms existing FTR learning methods, in both fully-supervised and low-resource settings.
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译